
1

A TRANSVERSE DAMPER SYSTEM FOR THE SPS IN THE ERA OF THE LHC

Dave McGinnis
July 13, 1995

Introduction

A bunch by bunch transverse damper system will be needed for the SPS when the SPS
is used as an injector for the LHC. This paper will propose a stripline bunch by bunch damper
system. An analysis of the gain, bandwidth, and power levels is included. Table 1 is a list of
some of the relevant parameters for the damper system.

Number of batches 3
Spacing between batches 100 nS
Batch length 2 uS
Number of bunches per batch 80
Bunch spacing in a batch 25 nS

Bunch intensity (Nb) 1.6x1011

Bunch length (4σb) 5 nS
Revolution frequency (fr) 43 kHz
RF frequency 200 MHz
Energy (E) Injection 26 GeV

Extraction 450 GeV
Tune (Q) 26.6
Tune Spread (∆Q) Horizontal 1.0%

Vertical 1.0%
Effective half aperture Horizontal 40 mm

Vertical 18 mm
Closed orbit drift 30% full aperture
Pickup Beta functions (βpu) 100 m
Pickup aperture (dpu) Horizontal .142 m

Vertical .038 m
Pickup sensitivity (gk) 0.66

Kicker Beta functions (βk) Horizontal 76 m
Vertical 45 m

Kicker aperture (dk) Horizontal .142 m
Vertical .038 m

Kicker length (lk) Horizontal 1.500 m
Vertical 1.500 m

Kicker Impedance (Zo) 50 Ω
Kicker Voltage (Vk) 2000 V
Kicker sensitivity (gk) 0.66

Table 1

Pickup Design

Presently a capacitive pickup is used as the damper pickup. The impedance of the
pickup is about 1 Ω. A short distributed RC oscilloscope cable with a series impedance of 300
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Ω directly connects the output of the pickup with a high impedance preamplifier. The
bandwidth of the cable is about 200 MHz. The preamplifier has an input impedance of 1 MΩ
and a gain of 26 dB. The voltage induced on the input to each preamp is approximately:

V(t)in =
1
2

Zoib (t)∗f(t) (1)

where * denotes the convolution operation, f(t) is the frequency response of the filter, and Zo
is the characteristic impedance of the pickup which is equal to:

Zo = L
cC

(2)

where L is the length of the pickup, C is the capacitance of the pickup, and c is the velocity of
light. The bunch current, ib(t) is convolved with the filter response of the RC cable. We will
assume the bunch current to be a gaussian:

ib(t) =
qNb
2πσb

e
− t 2

2σb
2

(3)

The Fourier transform of the bunch current is:

Ib(ω) = qNbe
−

ω2σb
2

2 (4)

To make the math easier, we will assume that the filter has a gaussian response:

F(ω) = e
− 1

2
ω

2πWf
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(5)

where Wf is approximately the 3 dB bandwidth of the filter in Hertz. The inverse Fourier
transform of the bunch current convolved with the filter is:

ib(t)∗f (t) =
qNb

2π σb
2 + σf

2( )
e

− 1
2

t2

σb
2 +σf

2( )
(6)

where:

σf =
1

2πWf
(7)

If we use a bandwidth of 200 MHz, the current out of a pickup electrode has a peak value of
6.9 Amperes. If a bandwidth of half the bunch spacing is used (20 MHz), a peak current of 1.3
Amperes is achieved. Since the impedance of the pickup plates is about 1Ω, the input voltage
to the preamp will exceed 1V. Therefore, the preamp will most likely saturate.
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Closed Orbit Suppression

It may be possible to design the preamp to not have any gain but be used to solely to
derive the sum and difference signals. If the closed orbit does not pass through the electrical
center of the pickup, the current induced on one electrode plate will be different than the other
plate resulting in a large unwanted difference signal. The closed orbit electrode currents may
be balanced by placing variable capacitors (varactor diodes) in parallel with the electrodes.
This has actually been done in the past but this feature has since been removed. However, this
type of closed orbit suppression has the disadvantage that an active component with limited
dynamic range is the first element in the amplifier chain and must bear the brunt of about half
the beam current captured by the pickup.
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Figure 1. Sum Difference Closed Orbit Suppression.

Because of the limited dynamic range offered by the preamp of a capacitive pickup, we
will now consider a stripline pickup configuration. Since a stripline pickup would probably not
be able to detect the first betatron line for unbunched beam, we will assume that the damper is
to be used only with the 40 MHz bunch structure provided by the PS. The sum and difference
signals from the pickup are derived with a wideband RF sum and difference hybrid shown in
Fig. 1. The difference signal carries the betatron information which is located at the betatron
sidebands. Since the fractional part of the tune is rarely close to an integer, these sidebands are
located far away from the revolution harmonics. If the beam does not pass through the center
of the pickup, the difference signal also carries a large unwanted closed orbit signal located at
the harmonics of the revolution frequency. The sum signal carries very little of the betatron
information and is mostly composed of revolution harmonics of the beam current. These
revolution harmonics should have the same spectrum as the revolution harmonics found in the
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difference signal. If the sum signal is multiplied by a constant number and then is subtracted
from the difference signal, the revolution lines in the difference signal can be suppressed
without disturbing the betatron lines. The advantage of this system is that after the At∆
attenuator, the first element in the amplifier chain is a passive difference hybrid which has a
large dynamic range.

If the closed orbit moves slowly compared with the betatron frequency, then the closed
orbit can be tracked through two separate legs. The first is a feedforward signal that is derived
from a beam position signal. This beam position signal could be derived from the damper
pickup or a pickup nearby. The other leg is a feedback signal which measures how much
closed orbit signal is left in the difference signal and applies this error back to the sum mode
multiplier. The feedforward signal is used so that the gain on the feedback leg can be reduced
for noise or stability reasons.

In practice, closed orbit variations on the order of 5% of the half aperture have been
reduced by well over 30dB. There is no reason why larger closed orbit variations cannot be
suppressed except for the maximum output of the sum mode multiplier. For the Analog
Device 834, a 0-500 MHz 4 quadrant multiplier, this maximum voltage into 50 Ω is about 0.3
V. However, an amplifier with a higher 1 dB compression point can be placed after the
multiplier, but the frequency characteristics of the amplifier must be carefully matched in the
difference leg with an equalizer. The major drawback to this type of closed orbit suppression is
the wideband noise generated by the AD834. The spectral noise density measured out of the
AD834 is about 147 dBm/Hz which is disastrous when used in a damper system for a storage
machine such as the TEVATRON during collisions. However, the effect is not as bad if the
damper is only to be used for a short time such as when the TEVATRON is injecting or
accelerating.

Another pitfall of this closed orbit suppression scheme which was fairly difficult to
track down is an apparent delay magnification effect for the difference mode signal compared
to the sum mode signal due to mismatches in delay between the two legs of the pickup. The
signal on the A and B sides of the pickup are:

IA =
Ib
2

1 +
2x
d

 
 

 
 e

jω
τ
2 IB =

Ib
2

1−
2x
d

 
 

 
 e

− jω
τ
2 (8)

where d is the pickup aperture, x is the closed orbit position with respect to the electrical
center of the pickup, and τ is the delay difference between the A pickup cable and the B
pickup cable. The sum and difference signals are:

IA+B = Ib cos ω
τ
2

 
 

 
 + j

2x
d

sin ω
τ
2

 
 

 
 

 
 

 
 (9)

IA−B = Ib
2x
d

cos ω
τ
2

 
 

 
 + jsin ω

τ
2

 
 

 
 

 
 

 
 (10)

For a very small delay error, the phase of the sum and difference signals is:

θA+B ≈ ω x
d

τ θA−B ≈ ω
1

4x
d

τ (11)

So the change in delay of the sum and difference signals is:
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DelayA+ B =
x
d

τ DelayA− B =
1

4x
d

τ (12)

From Eqn. 12, the delay of the difference leg becomes "magnified" by the position of the
closed orbit. This effect required the pickup cable delays to be matched within 10 pS.

Front End Pulse Shaping

The bunch spacing in the SPS will be 25 nS which is determined by the PS 40 MHz RF
system. Therefore, the minimum bandwidth of a bunch by bunch dampers system should be 20
MHz. Using Eqn. 7, we see that the cut-off frequency for the beam spectrum is about 127
MHz so that it is unnecessary to design a pickup that can detect higher frequencies than this.

In this paper, we will assume that all possible bunch modes could be excited so that the
worst possible case is for one bunch excitation. The frequency spectrum of a one bunch
excitation covers every revolution line so that having the largest possible bandwidth will give
the fastest damping rate. Another way to look at this, is that the damper signal applied to the
kicker will be proportional to the beam current (if the signal is left unnormalized which is best
for noise considerations). The amplitude of the pickup signal will be proportional to the
bandwidth of the pickup for frequencies up to the bunch cut-off frequency of 127 MHz.
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Figure 2. The stripline pickup signal for two bunches spaced 25 nS apart and the output of
the 80 MHz low pass filter shown in Fig. 3.
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Figure 3. Front end pulse shaping.

The output of the stripline pickup will be a doublet as shown in Fig. 2. The overlap of
the front and back pulses of the doublet should be small to avoid signal cancellation.
Therefore, it is desirable for the center frequency of the stripline pickup to be well below the
bunch cut-off frequency. The pickup signal should be processed in such a way so that the
signal has a large flat top that minimizes the effect of phase noise in the digitizing clock or the
beam. A reasonably square pulse can be obtained by multiplying the doublet with a square
wave that is a harmonic of the bunch frequency as shown in Fig. 3. The zero crossing of the
doublet and the square wave should coincide. The output of this pulse is then integrated by a
low pass filter that has the bandwidth equal to the center frequency of the stripline pickup. A
reasonable compromise is to build a pickup which has a length of 0.9375 m. The center
frequency of the pickup is 80 MHz which is twice the bunch frequency. The output of the
filter is shown in Fig. 2. The cut-off frequency of the filter is 80 MHz and the filter has 4 poles
giving it a falloff of 24 dB/octave.

Damper Back End

Using the linear formula for the current induced on the pickup given in Eqn. 8, the
voltage at the output of Fig. 3 is:

V A/ D =
1
2

gpugcosgmgpulse
Zo
2

ib t +
Lpu

c

 
 
  

 
+ ib t −

Lpu

c

 
 
  

 
 

 
  

 
 ∗f(t)

 

 
  

 
 

t=0

2xpu

dpu
(13)

where gpu is the pickup sensitivity (which is less than 1), Lpu is the length of the pickup, gcos
is the gain of the closed orbit suppression module, gm is the conversion gain of the mixer, and
gpulse is the gain of the amplifier before the output. Theextra factor of 2 underneath Zo is due
to the fact that the pickup is a terminated stripline.

The rest of the damper system is shown in Fig. 4. It is assumed that the power amps
with gain gpa will be running Class B and that the total system will be push-pull. The

deflection angle of the kicker is equal to the ratio of the transverse change in momentum to the
longitudinal momentum:
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θk = 2gk
Lk
dk

q
pc

=
dθk
dVk

Vk (14)

where gk is the sensitivity of the kicker, Vk is the kicker voltage, Lk is the length of the
kicker, and dk is the aperture of the kicker. To achieve the bandwidth of a bunch by bunch
damper, the kicker should be a terminated stripline. The factor of 2 in Eqn. 14 is due to the
magnetic field plus the electric field kick of a stripline.

∆
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Figure 4. The back end of the Damper system.

Using Eqn. 13, the kicker deflection angle can be written as:

θk =
1
2

gpuge
Zo
2

ib t +
Lpu

c

 
 
  

 
+ ib t −

L pu

c

 
 
  

 
 

 
  

 
 ∗f(t)

 

 
  

 
 

t =0

dθk
dV k

2xpu

dpu
(15)

where ge is the electronic gain from the output of the pickup hybrid to the output of one of the
kicker power amplifiers.

ge = gcosgmgpulsegpa (16)

where gpa is the gain of the power amplifiers and includes the power amplifier difference
hybrid. Equation 15 can be rewritten as:

θk =
2

Nturns

xpu

β kβpu
(17)

The dimensionless quantity Nturns is defined as:

1
geNturns

=
1
2

gpu
Zo
2

ib t +
Lpu

c

 
 
  

 
+ ib t −

Lpu

c

 
 
  

 
 

 
  

 
 ∗f(t)

 

 
  

 
 

t=0

dθk
dVk

βpuβk

dpu
(18)

Later, it will be shown that Nturns is equal to the damping time. The damping times can be
calculated using Eqn. 18 and are shown in Table 2.
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Plane Energy geNturns
(GeV) (dB)

Vertical 26 76
Vertical 450 101

Horizontal 26 97
Horizontal 450 121

Table 2.  Damping times assuming a front end pulse bandwidth of 80 MHz and a pickup
length of 0.9375m

Damping Rates

The phase space betatron vector of a bunch can be separated into a slowly varying
amplitude multiplied by a vector rotating at the betatron frequency.

A = a(t)e jQωrt (19)

The effect of the kicker on a bunch with betatron vector A in phase space is shown in Fig. 5.
The new vector after going through the kicker is:

A nTr( )= A (n − 1)Tr( )e j2πQ + j βkθ nTr( ) (20)

The change in amplitude is:

∆a nTr( ) = je −j2πQn βk θ nTr( ) (21)

The kicker deflection is a function of the beam position at the pickup. From Eqn. 17:

βk θ(t) =
2

Nturns
a(t)cos Qωrt − φpk( ) (22)

Equation 21 becomes:

∆a nTr( )= j
a nTr( )
Nturns

e
− jφpk + e

− j 4πQn−φpk( ) 

 
  

 
 (23)

If the damping time is not very fast, then the second term on the right hand side of Eqn. 23
will average to zero over many turns. Setting the phase advance between pickup and kicker to
be 90°, the average change per turn of the amplitude is:

da
dt

= −
1

NturnsTr
a (24)

which has the solution:

a(t) = aoe
− t

N turnsTr (25)
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Figure 5. The action of the kicker on a bunch with betatron amplitude A in phase space.

Damper Simulation

A simple simulation can be made where the betatron amplitude can be calculated from
the preceding betatron amplitude using:

A n+1 = ej2πQ An −
2

N turns
Re An{ }

 

 
  

 
 (26)

where it has been assumed that the phase advance between pickup to kicker is an odd multiple
of 90°. Figure 6 shows a simulation where the damping time was set to 10 turns. The fastest
damping possible is 4 turns. Larger damper gains will have the damper over-correcting each
turn. If the damper overcorrects, then the betatron amplitude will grow instead of decreasing.
Therefore the maximum electronic gain for the damper should be 12 dB less than what is
found in Table 2.
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Figure 6. Normalized betatron amplitude for a damper with a damping time of 10 turns.

Non-Linear Damping

In the simulation shown in Figure 6 it was assumed that the damper power amplifier
did not saturate. This is typically not true at injection where injection errors due to kickers,
magnet drift, etc. result in a large initial betatron oscillation. If the damper saturates, the
damping will become non-linear and the damping rate will depend on the initial amplitude of
the betatron oscillation. The initial amplitude of the betatron oscillation is:

ainj =
xinj

βinj
(27)

The amount of betatron amplitude that the kicker can remove each turn is limited by the
maximum voltage on the kicker. The kicker waveform now looks like a square wave with
amplitude θmax oscillating at the betatron frequency: The square wave can be expanded in a
Fourier series:

θ(t) =
4

π
dθk
dV k

Vkmax

(−1)m+1

2m − 1
cos (2m −1)Qωr t − φpk( )

m =1

∞

∑ (28)

where Vkmax is the maximum kicker voltage. Following the same procedure that was used in

Eqn. 23, the only term that will not average to zero is the m=1 term. The average change in
amplitude for one turn is:
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∆a = −
2
π

βk
dθk
dV k

V kmax
(29)

Equation 24 now becomes:

da
dt

= −
2

πTr
βk

dθk
dV k

V kmax
(30)

which has the solution:

a(t) =
x inj

βinj
1−

t
Nsat.Tr

 

 
  

 
 (31)

The damping time is:

Nsat. =
π
2

xinj

βinjβk

1
dθk

dVk
V

k max

(32)

The injection oscillation should be damped before the bunch has a chance to decohere. The
decoherence time due tune spread is:

Tdecoh = Trev
π∆Q

= NdcTrev (33)

Using the numbers for space charge tune spread at injection that were seen in the SPS during
collider running (and is given in Table 1), the decoherence time is 32 turns. If the saturated
damping time is set equal to the decoherence time, the maximum amplitude of oscillation at
the pickup at injection is 1.9 mm horizontally and 5.5 mm vertically. A simulation of the
vertical SPS damper using the parameters of Table 1 and using a linear damping gain of 4
turns is shown in Figures 7 and 8.
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Figure 7. Normalized betatron amplitude for the vertical damper at injection. The linear
damper gain is set for 4 turns. The injection amplitude at the pickup is 5.5 mm..

0 10 20 30 40 50
3000

2000

1000

0

1000

2000

3000

turn

Volts
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for 4 turns. The injection amplitude at the pickup is 2.75 mm..
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Kicker Bandwidth

The previous analysis assumed that the damper was bunch by bunch so that each bunch
had no knowledge of the any other bunch. This was done by making the bandwidth of the
damper much larger than  1/bunch spacing. For the pickup, this is fairly easy to do and also
increases the sensitivity of the pickup. (See Eqn. 13) A wideband power amplifier for the
kicker is much more difficult. This section will address what is the minimum possible
bandwidth that is needed for the kicker power amp.

Since we are talking about bandwidth, then this analysis will be done in the frequency
domain. To do the analysis in the frequency domain requires the formulation of coupled bunch
modes. Coupled bunch mode formulation assumes that the bunches are equally spaced and
uniformly populated. Even though this will not be the case for the SPS bunch train
configuration, the coupled bunch mode analysis for high mode numbers will sort of be a worst
case description for the situation where the betatron phase alternates by 180° every bunch.

The slowly varying betatron amplitude (see Eqn. 19) for each bunch i is:

ai (t) = bm (t)e j2πmi/ h

m =0

h

∑ (34)

where h is the number of bunches in the machine. The betatron vector at the kicker is:

A k(t) = bm (t)e j(m+Q)ω r t

m=0

h

∑ (35)

At the pickup, the betatron phase is rotated by -φpk for each bunch. The pickup signal before
the going through the power amplifier will be:

j
gpa

βkθ(t) = j
2

gpa Nturns
Re bme

j(m+Q)ωr t− jφpk

m=0

h

∑
 

 
 

 

 
 (36)

where gpa is the gain of the power amplifier.
For a bunch by bunch damper, this signal will be delayed by x turns and then be passed

through a y turn notch filter. The x turn delay multiplies the coupled bunch mode amplitude
by:

e− j(m+Q)ω rxTr (37)

The notch filter multiplies the coupled bunch mode amplitude by:

1
2

1− e− j(m+Q)ω ryT r( ) (38)

Equation 36 becomes:
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j
gpa

βkθ(t) = j
2sin(πQy)
gpa Nturns

Re bmej(m+Q)ωrt − jψ

m =0

h

∑
 

 
 

 

 
 (39)

where:

  
ψ = φpk + πQ ( 2 x + y ) −

π
2

(40)

Because of the non-linear nature of the digitizer, the gain of the power amplifier in
Eqn. 39 has to be specified carefully. For a single clock event, The output of the digitizer is
going to be a function of time vD(t). In general, the output of the digitizer could be further
processed by other non-linear operations such as frequency up-converting by multiplying with
a mixer. In our case vD(t) will be a square pulse which has a length equal to the bunch
spacing. The power amplifier has an impulse response:

G parpa (t) =
Gpa

2π
Rpa (ω)e jωtdω

−∞

∞

∫ (41)

where Gpa is the maximum gain of the amplifier in the frequency domain (i.e. the maximum
value of Rpa is unity). The response of the kicker will be:

rk (t) =
1

2π
Rk (ω)e jωtdω

−∞

∞

∫ (42)

where the maximum value of Rk is one. The gain of the power amplifier is defined as:

gpa (t) =
Gmaxrk(t)∗ rpa (t)∗vD(t)( )

vD (0)
(43)

where * denotes the convolution operation. This can be re-written as:

gpa (t) = Gpa

Rk (ω)Rpa (ω)VD(ω)e jωtdω
−∞

∞

∫

VD(ω)dω
−∞

∞

∫
= 1

2π
˜ g pa (ω)e jωtdω

−∞

∞

∫ (44)

We will assume that the delay of the gpa(t) is zero. This means that the group delay of the
terms Rk(ωω), Rpa(ωω), VD(ωω) is  zero. Then Eqn. 39 should be written as:

j
gpa (0)

βk θ(t) = j
2sin(πQy)

gpa (0)Nturns
Re bmej(m+Q)ωr t − jψ

m =0

h

∑
 

 
 

 

 
 (45)
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Since the power amplifier might not have enough bandwidth so that the signal of the previous
bunches has not died away when the new signal arrives at the power amplifier, we must sum
over the amplitudes of the previous bunches.

j βk θ(t) = j
2sin(πQy)

gpa (0)Nturns
gpa l

Tr
h

 
 

 
 

l=−∞

∞

∑ Re bme
j(m+Q)ω r t −l

Tr
h

 
 
  

 
 − jψ

m=0

h

∑
 

 
  

 

 
 (46)

The change in amplitude of bunch i is:

A n +
i
h

 
 

 
 Tr

 
 

 
 = A n +

i
h

−1 
 

 
 Tr

 
 

 
 e

j2πQ + j βkθ n +
i
h

 
 

 
 Tr

 
 

 
 (47)

which reduces to:

∆bme j2πmi/ h

m =0

h

∑ = j βk θ n +
i
h

 
 

 
 Tr

 
 

 
 e

− j2π n+
i
h

 
 
  

 
 Q

(48)

Substituting Eqn. 46 into Eqn. 48 and then averaging over the number of turns n (just as in
Eqn. 23) results in:

∆bme j2πmi/ h

m =0

h

∑ = j
e− jψ sin (πQy)
gpa (0)Nturns

bmej2πmi / h

m =0

h

∑ gpa l
Tr
h

 
 

 
 

l=−∞

∞

∑ e
− j2π(m +Q)

l
h (49)

The second sum in Eqn. 49 can be written as:

gpa l
Tr
h

 
 

 
 

l =−∞

∞

∑ e
− j2π(m +Q)

l
h = gpa (t)e− j(m +Q)ω r t

−∞

∞

∫ δ t − l
Tr
h

 
 

 
 

l= −∞

∞

∑
 

 
 

 

 
 dt (50)

The sum of delta functions is a periodic series which can be written as a Fourier series:

gpa l
Tr
h

 
 

 
 

l =−∞

∞

∑ e
− j2π(m+Q)

l
h = gpa (t)e− j(m+Q)ω r t

−∞

∞

∫
h

Tr
e−jlhω r t

l= −∞

∞

∑
 

 
 

 

 
 dt (51)

gpa l
Tr

h
 
 

 
 

l =−∞

∞

∑ e
− j2π(m +Q)

l
h =

h
Tr

gpa (t)e−j(lh+ m+Q)ω r t

−∞

∞

∫ dt
l=−∞

∞

∑ (52)

The integral is just the Fourier transform of the power amplifier (plus the D/A pulse and kicker
response):

gpa l
Tr
h

 
 

 
 

l =0

∞

∑ e
− j2π(m+Q)

l
h =

h
T r

˜ g pa (lh + m + Q)ωr( )
l=0

∞

∑ (53)
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Substituting this result into Eqn. 49

∆bme j2πmi/ h

m =0

h

∑ = bme j2πmi/ h

m =0

h

∑

⋅

j
e− jψ sin(πQy)
gpa(0)N turns

h
Tr

˜ g pa (lh + m + Q)ωr( )
l=−∞

∞

∑

(54)

Because of the 2πmi/h phase term, Eqn. 54 must hold true term by term. Therefore, following
the procedure outlined in Eqns. 23-25, the damping rate (1/τm) for each coupled bunch mode

is:

1

τm
=

sin(πQy)
gpa(0)N turns

h
Tr

2 Re ˜ g pa (lh + m + Q)ωr( )( )
l= −∞

∞

∑ (55)

From Eqn. 44:

˜ g pa (ω) = 2πG pa
Rk(ω)Rpa (ω)VD (ω)

VD(ω)dω
−∞

∞

∫
(56)

Substituting Eqns. 56 into Eqn. 55, the coupled bunch mode growth rate is:

1
τm

=
sin(πQy)
NturnsT r

K pa (m) (57)

where:

K pa (m) = hωr

Re Rk ωmq l( )Rpa ωmql( )VD ωmq l( )
l=−∞

∞

∑
 

 
 

 

 
 

VD(ω)dω
−∞

∞

∫
(58)

and:

ωmq l = (lh + m + Q)ωr (59)

If the power amplifier and the kicker have infinite bandwidth, then Kpa will approach unity. As
an example, consider a two pole Butterworth amplifier has a frequency response:
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Rpa (ω) =
e

j 2
ω

2πf 3dB

1 − ω
2πf3dB

 

 
  

 
 

2

+ j 2
ω

2πf3dB

(60)

where f3dB is the 3dB cut-off frequency. Above the cut-off frequency, the amplifier will fall at
12dB/octave. (Important Note: The delay of the amplifier is taken out by the phase
factor in the numerator of Eqn. 60.) The frequency response of the D/A pulse is:

V D(ω) =
sin π

ω
2πfclock

 

 
  

 
 

π ω
2πf clock

(61)

where fclock is the frequency of the D/A clock (which would be 40 MHz for the SPS). The
kicker response is:

Rk (ω) =
sin ω

Lk
c

 
 

 
 

ω Lk
c

(62)

where c is the velocity of light.
The effective damping gain, Kpa, is plotted as a function of mode number for two

different amplifier bandwidths in Fig. 9. A lower frequency amplifier actually enhances the
damping rate of the lower mode numbers because the kicker pulse from each bunch overlaps
and adds to the next kicker pulse. However, at high mode numbers, adjacent kicker pulses
actually subtract from one another and the damping gain is reduced. Figure 10 shows Kpa for
mode 0 (the lowest frequency mode) and mode 462 (the highest frequency mode) for different
amplifier bandwidths. For mode 462, the betatron phase difference of adjacent bunches is
180°. This would be the worst possible case of a bunch by bunch damper system. Figure 10
shows that the power amplifier bandwidth should be greater than 20 MHz. Finally, Figure 11
shows the pulse shape of an amplifier with a 20 MHz bandwidth, a D/A clock of 40 MHz, and
a kicker length of 1.50m. The pulse width at the base is about 50 nS.
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Figure 9. Effective damping gain versus coupled bunch mode number for two different
amplifier bandwidths.
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Figure 10. Effective damping gain verses amplifier cut-off frequency for the lowest and
highest modes.
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Noise Power

The previous section concentrated on the high end of the dynamic range of the damper
system. Before the gain configuration of the damper system can be determined, the noise
properties of the damper or the low end of the dynamic range must be calculated. The noise of
the damper system will cause emittance growth due to the random kicks. The change in
betatron amplitude shown in Eqn. 21 for many turns becomes:

∆ a( ) = ∆a nTr( )
n
∑ = j βk θ nT r( )e−jQω rnTr

n
∑ (63)

Following the steps outlined in Eqns. 50 - 53, Eqn. 63 becomes:

∆ a( ) =
j βk

Tr
θ(t)e− j m+Q( )ω r tdt

−∞

∞

∫
m
∑ (64)

∆ a( ) =
j β k

Tr

˜ θ m + Q( )ωr( )
m
∑ (65)

where the ~ denotes the Fourier transform. The phase space area enclosed by the betatron
vector is proportional to the magnitude of the betatron amplitude squared.

∆ a 2 = βkf r
2 ˜ θ m + Q( )ωr( )

n
∑

m
∑ ˜ θ * n + Q( )ωr( ) (66)

The derivative of the betatron amplitude as a function of time can be found taking the limit of:

d a 2

dt
=

T→∞
lim

∆ a 2

T
(67)

d a 2

dt
=

T→∞
lim βkf r

2 ˜ θ m + Q( )ω r( )
n
∑

m
∑ 1

T
˜ θ * n + Q( )ω r( ) (68)

Because the phase of the terms m ≠n will average to zero as T→∞, the only terms that will
contribute to the sum are m=n. Equation 68 becomes:

d a 2

dt
= βkf r

2

T→∞
lim

1
T

˜ θ n + Q( )ω r( )
2

n
∑ (69)

Power Spectral Density

Before we go any further, we need to define power spectral density. Assume a noise
source is a function of time. This function of time can be written as the inverse Fourier
transform of the noise spectrum:
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vn(t) =
1

2π
Vn (ω)ejωtdω

−∞

∞

∫ (70)

The average power is:

Pn(t) =
T→∞
lim

1
T

Pn(t)dt
−T/ 2

T/ 2

∫ =
T→∞
lim

1
T

vn(t)( )2
Zo

dt
−T/ 2

T/2

∫ (71)

Using Eqn. 70:

Pn(t) =
T→∞
lim

1
T

1

Zo 2π( )2
Vn ω1( )V n ω2( )e j ω1+ω2( )tdω2dω1

−∞

∞

∫
−∞

∞

∫ dt
− T/2

T/ 2

∫ (72)

Using the Fourier identity:

δ(ω) = 1
2π

e jωtdt∫ (73)

Equation 72 becomes:

Pn(t) =
T→∞
lim

1
T

1
Zo2π

Vn ω( )Vn −ω( )dω
−∞

∞

∫ (74)

Since vn(t) is a real function:

V n(−ω) = Vn(ω)( )* (75)

Equation 74 becomes:

Pn(t) =
T→∞
lim

1
T

Vn 2πf( )2

Zo
df

− ∞

∞

∫ = Sn(f )df
−∞

∞

∫ (76)

The Spectral Density of the noise is:

Sn(f) =
T→∞
lim 1

T

V n 2πf( )2

Zo
(77)

At the output of the digitizer the spectral density will have a spectrum of the form:

SD(f ) =
Pk

G pa
2

VD(2πf) 2

VD(2πf) 2df
−∞

∞

∫
(78)
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The quantity <Pk>/Gpa2 is the total average noise power coming out of the digitizer.

Pk =
G paVbit( )2

Zo
+ ge sin(πQy)( )2

Ppunoise (79)

where Vbit is the voltage of the least significant bit and <Ppunoise> is the average noise

coming out of the pickup hybrid in Fig. 2. The pickup noise <Ppunoise> will most likely be

dominated by the noise of the closed orbit suppression module. Note that the noise voltage of
the closed orbit suppression module can be translated to the pickup hybrid by dividing the
noise voltage by the closed orbit suppression module gain.

The spectral noise density of the kicker angle must include the frequency response of
the power amplifier and the kicker:

Sθ (ω) = θns
2 dKθ

df
(80)

where:

θns = dθk

dV k
Zk Pk (81)

dKθ (ω)
df

=
Rk(ω)Rpa (ω)VD (ω)

2

VD (ω)2 df
−∞

∞

∫
(82)

Equation 69 becomes:

d a 2

dt
= f r

2βkθns
2 dK θ m + Q( )ωr( )

dfm
∑ (83)

Also, the normalized phase space area enclosed by the betatron amplitude a is:

εn = γβπ a 2 (84)

where γβ are the relativistic factors. The normalized emittance growth rate is:

1
π

dε n

dt
= γβf r

2βkθns
2 dKθ m + Q( )ωr( )

dfm=−∞

∞

∑ (85)

If the noise density is fairly uniform over a revolution line, than the sum in Eqn. 85 can be
replaced with an integral:

1

π
dε n
dt

= γβf rβkθns
2K θ (86)



23

The parameter Kθ is plotted in Fig 12 as a function of amplifier bandwidth. If the kicker
bandwidth is very large, then Kθ will approach unity. However, Kθ in Fig. 12 approaches 0.85
because a kicker length of 1.536 m was used in the calculation. Using an amplifier bandwidth
of 20 MHz and from Table 1, the emittance growth rate at injection is 0.63 π-mm-mrad/sec-
kW for the horizontal plane and is 2.1 π-mm-mrad/sec-kW for the vertical plane.
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0.6

0.8

1

Amplifier 3dB Frequency (MHz)

Kθ

Figure 12. Emittance growth noise factor vs. amplifier bandwidth.

Signal Suppression

Equation 86 is true if the damper feedback loop is open so that only noise is being
applied to the beam and there is no damping. For example, this would be the case if the pickup
was disconnected. However, if the damper loop is closed, than the kicker noise that is
transmitted to the beam will be sensed by the pickup and the damper will act to reduce this
signal or the signal will be suppressed. Because noise acts over a bandwidth and not
concentrated at a single frequency, the width of the beam spectrum has to be included in this
analysis.

If the beam is given an transverse impulse kick, it will oscillate transversely at the
betatron frequency. If the individual particles in the beam each have a slightly different
betatron tune, then eventually the betatron phases of all the different particles will randomize
and the beam centroid will no longer seem to oscillate. The particle distribution has smeared
out or decohered in phase space. If the tune spread is small compared to the average betatron
frequency, then the betatron amplitude of the beam as awhole will oscillate according to:

A(t) = A oe
− t

Tdc sin Qωrt( ) (87)

where Tdc is the decoherence time. This time domain response has a Laplace transform of the
following:
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˜ A (s) ∝

2
Tdc

s

s2 + 2
Tdc

s + Qωr( )2
(88)

The bandwidth of this response is:

Bandwidth =
2

Tdc
= ∆Qωr (89)

or the decoherence time can be written as:

N dc =
Tdc
Tr

=
1

π∆Q
(90)

where Ndc is the number of turns it takes the beam to decohere.
The damper system acting with the beam can be represented as a negative feedback

system as shown in Fig. 13. The damper system in Fig. 13 only includes the gain electronics
Ge. (The effect of the notch filter and a multi-turn delay have been neglected.) The beam
transfer function includes not only the beam but the action of the pickup and kicker electrodes
as well. The overall system transfer function is:

Vout
Vin

=
Ge

1 + GeB(s)
(91)

where the beam transfer function has the form:

B(s,Q) =
je

− jφpk

GeNturnsTr

s

s2 + 2
N dcTr

s + Qωr( )2
(92)

where GeNturns is given by Eqn. 18. Substituting Eqn. 92 into Eqn. 91:

Vout

Vin
=

Ge s2 + 2
NdcTr

s + Qωr( )2
 

 
  

 
 

s2 + 2
Tr

1
Ndc

+ je
− jφpk

Nturns

 

 
 

 

 
 s + Qωr( )2

(93)

At s = jQωr, the overall transfer function is:

Vout
Vin s=± jQωr

=
Ge

1 + Ndc
N turns

(94)
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Equation 94 shows that when any signal (including noise) is supplied to the damper, the signal
becomes suppressed at the betatron frequencies when the damper loop is closed. The
emittance growth rate shown in Eqn. 86 must be multiplied by the signal suppression factor:

1

π
dε n
dt

= γβf rβk
θns

1 + Ndc
Nturns

 

 

 
 

 

 

 
 

2

Kθ (95)

G
e
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+
- V

out
V

in

Figure 13. Beam - Damper negative feedback system.

Gain Distribution

To determine the gain distribution, a specific block diagram of the damper system must
be chosen. The one chosen in this paper is shown Fig. 14. There are two major constraints on
the layout of the gain blocks. The first is the maximum voltage at the digitizer due to an
injection oscillation. The voltage at the digitizer is given by Eqn. 13. We will assume that the
closed orbit suppression module eliminates the closed orbit voltage at the digitizer so that the
only voltage present is due to injection oscillations. The digitizer will have a maximum voltage
level that if exceeded will damage the digitizer. Since the gain of the closed orbit suppression
module is:

gcos =
1
2

gAt∆ (96)

where gAt∆ is the gain of the At∆ attenuatior (<1), the product of the pulse gain and the gain
of the attenuator is:

gAt∆gpulse =
2VA/Dmax

gpugm
Zo
2

ib t +
Lpu

c

 
 
  

 
+ ib t −

L pu

c

 
 
  

 
 

 
  

 
 ∗f(t)

 

 
  

 
 

t=0

xpu inj

dpu

(97)

For noise purposes, it is desirable to make gAt∆ as close to 0dB as possible and it will be
assumed that the minimum value of gpulse is 0dB. These three conditions will determine the
values of these gains.
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The second major constraint on the layout of the gain blocks is the voltage that the
closed orbit suppression module must remove. This voltage is:

Vco = 2gpugAt∆
Zo
2

ib(0)
xpuco

dpu
(98)

Note that the beam current response is not convolved with the filter because this voltage is
measured before the filter. Because the closed orbit multiplier has a maximum voltage (which
can be increased by the amplifier Gmco), the At∆ attenuator must be set so that the pickup
signal does not exceed this voltage.

gAt∆ =
G mcoV AD834max

2gpu
Zo
2

ib(0)
xpuco

dpu

(99)

A reasonable value for Gmco is 20 dB and for VAD834max is 0.3V.

The gain of the power amplifier (which includes the difference mode hybrid for driving
each kicker plate) is:

G pa =
2ge

gmgAt∆gpulse
(100)

Finally, the noise power at the kicker can be determined:

Pk =
G paVbit( )2

Zo
+

geGmco
gAt∆

sin(πQy)
 

 
  

 
 

2

SAD834Wf (101)

where SAD834 is the noise spectral density of the closed orbit multiplier (-147 dBm/Hz for
the AD834) and Wf is the bandwidth of the front end (80 MHz).
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Figure 14.  Total system diagram of the bunch by bunch damper.

Damper Design

Using the parameters from Table 1 and the preceding formulas, a number of design
possibilities are presented in Table 3. It was assumed that the kicker bandwidth exceeds 20
MHz, the digitizer resolution is 8 bits, the pickup center frequency and the pulse shaping low
pass filter bandwidth is 80 MHz. The first parameter to be specified is the linear damping time
that is desired. To be conservative, a damping time of 4 turns was chosen. Also a damping
time of 32 turns (which is equal to the decoherence time) was also evaluated.

For injection damping, the injection oscillation amplitude that could be damped in one
decoherence time for the given kicker voltage was calculated by inverting Eqn. 32. With this
constraint, oscillation amplitudes of only a few millimeters are permitted. If an injection
oscillation of 1.9 mm at the pickup (β=100m) was not damped and allowed to decohere, the
normalized emittance would increase by 1.0 π-mm-mrad (5.5 mm oscillation correlates to a
normalized emittance growth of 8.4 π-mm-mrad) . In principle, one would want the saturated
damping time much shorter than the decoherence time. To alleviate this constraint one could
increase the kicker voltage (or  decrease the kicker aperture) or reduce the tune spread so that
larger oscillations are permitted. Also, the estimate for the kicker sensitivity of 0.66 might be
too pessimistic.

The noise properties of the dampers does not look like a problem at injection. There is
a fairly large input attenuator ( 25.6 dB) to keep the closed orbit voltage from exceeding the
AD834 multiplier output. This attenuator could be reduced by reducing the closed orbit
excursion specification or by increasing the gain of the amplifier immediately after the AD834
multiplier (Gmco). One has to be careful about increasing Gmco because the noise of the front
end is dominated by the AD834. Because of the large input attenuator, one could argue that a
lower impedance capacitive pickup could be used in place of the stripline. The gain on the
front end is also kept low because of the fairly tight specification of the maximum voltage into
the digitizer. If this specification was increased, then more gain could be shifted to the front
end. In Table 3, Rfe/bit is the ratio of the noise due to the front end to the bit noise evaluated
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at the kicker. If this ratio is above 0 dB, then nothing is gained by shifting more gain to the
front end.

If the same damping time is required at high energy that is used at injection, then the
electronic gain must be increased by 25 dB during the acceleration cycle to combat the
decrease in kicker strength (See Table 2.). If this gain is added downstream of the digitizer,
then the kicker angle noise θn is independent of energy (See Eqn. 81). However, the
normalized emittance growth rate will increase with energy (a factor of 17 from injection to
extraction) because of the factor of γ  that must be used in converting to normalized emittance
(See Eqn. 86).
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Plane Vertical Vertical Horizontal Horizontal

Energy GeV 26 26 26 26

dpu, dk mm 38 38 142 142

VA/Dmax V 2 2 2 2

V834max V 0.3 0.3 0.3 0.3

Nturns 4 32 4 32

Nsat 32 32 32 32

Ndc 32 32 32 32

Wf MHz 80 80 80 80

ib(0) A 8.2 8.2 8.2 8.2

ib*f|t=0 A 3.6 3.6 3.6 3.6

ge dB 64 46 85 67

xinj mm 5.5 5.5 1.9 1.9

gAt∆ dB -25.6 -25.6 -25.6 -25.6

gpulse dB 22 22 42 42

Gpa dB 80.1 62.1 80.1 62.1

Gmco dB 20 20 20 20

<Pk> Watts 140 2.2 1820 29

Rfe/bit dB -9.0 -9.0 11 11

Sig. Supr. dB 19 6 19 6

dε/dt πmm-mrad .019 .006 .029 .009

Table 3. Damper parameters for injection into the SPS.
Column 4 is the same as Column 3 and Column 6 is the same as Column 5 except the
damping time was changed from 4 turns to 32 turns.
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Appendix A
Summary of Equations

Beam current response after it has been filtered:

ib(t)∗f (t) =
qNb

2π σb
2 + σf

2( )
e

− 1
2

t2

σb
2 +σf

2( )
(A1)

σf = 1
2πWf

(A2)

To hold true, the falloff of the filter should be at least 12 dB/octave.

The kicker deflection angle:

θk = 2gk
Lk
dk

q
pc

=
dθk
dVk

Vk (A3)

Betatron amplitude as a function of time for a linear damper:

xpu(t)

βpu
= a(t) = aoe

− t
N turnsTr (A4)

1
geNturns

= 1
2

gpu
Zo

2
ib t +

Lpu

c

 
 
  

 
+ ib t −

Lpu

c

 
 
  

 
 

 
  

 
 ∗f(t)

 

 
  

 
 

t=0

dθk

dVk

βpuβk

dpu
(A5)

Betatron amplitude as a function of time for a saturated damper:

a(t) =
x inj

βinj
1−

t
Nsat.Tr

 

 
  

 
 (A6)

The damping time is:

Nsat. =
π
2

xinj

βinjβk

1
dθk
dVk

V
k max

(A7)

Decoherence 1/e time:

Tdecoh =
Trev
π∆Q

= NdcTrev (A8)
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Phase advance between pickup to kicker needed for a damper with an x turn delay and a y
turn notch:

φpk = π(m − Q(2x − y)) (A9)

where m= any integer.

Coupled bunch mode m damping time:

1
τm

=
sin(πQy)
NturnsT r

K pa (m) (A10)

K pa (m) = hωr

Re Rk ωmq l( )Rpa ωmql( )VD ωmq l( )
l=−∞

∞

∑
 

 
 

 

 
 

VD(ω)dω
−∞

∞

∫
(A11)

ωmq l = (lh + m + Q)ωr (A12)

where the bunch spacing is Tr/h.

Normalized stripline kicker responsewith zero group delay:

Rk (ω) =
sin ω

Lk

c
 
 

 
 

ω Lk
c

(A13)

Normalized Butterworth 12dB/octave filter with zero group delay:

Rpa (ω) =
e

j 2
ω

2πf 3dB

1 − ω
2πf3dB

 

 
  

 
 

2

+ j 2
ω

2πf3dB

(A14)

Normalized frequency response of the D/A pulse with zero group delay:

V D(ω) =
sin π

ω
2πfclock

 

 
  

 
 

π ω
2πf clock

(A15)

Normalized emittance growth rate due to noise power:
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1

π
dε n
dt

= γβf r
2βkθns

2 dKθ m + Q( )ωr( )
dfm=−∞

∞

∑ (A16)

dKθ (ω)
df

=
Rk(ω)Rpa (ω)VD (ω)

2

VD (ω)2 df
−∞

∞

∫
(A17)

θns =
dθk

dV k
Zk Pk (A18)

Pk =
G paVbit( )2

Zo
+ ge sin(πQy)( )2 Ppunoise (A19)

Emittance growth due to uniform noise:

1

π
dε n
dt

= γβf rβkθns
2K θ (A20)

including signal suppression:

1
π

dε n

dt
= γβf rβk

θns

1 + Ndc
Nturns

 

 

 
 

 

 

 
 

2

Kθ (A21)

Gain of front end electronics (See Figure 14):

gAt∆gpulse =
2VA/Dmax

gpugm
Zo
2

ib t +
Lpu

c
 
 
  

 
+ ib t −

L pu

c
 
 
  

 
 

 
  

 
 ∗f(t)

 

 
  

 
 

t=0

xpu inj

dpu

(A22)

gAt∆ =
G mcoV AD834max

2gpu
Zo
2

ib(0)
xpuco

dpu

(A24)

G pa = 2ge

gmgAt∆gpulse
(A23)

Noise power at the kicker :

Pk =
G paVbit( )2

Zo
+

geGmco
gAt∆

sin(πQy)
 

 
  

 
 

2

SAD834Wf (A25)
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Appendix B
Symbols

Nb number of particles in a bunch
q electric charge
4σb bunch length at the base
Wf 3dB band width of the filter
gk sensitivity of the kicker,
Vk kicker voltage
Lk length of the kicker
dk aperture of the kicker
p beam momentum.
Tr revolution period
gpu sensitivity of the pickup
Zo impedance of the pickup
dpu pickup aperture
Lpu pickup length
ge total damper electronic gain

βpu pickup beta function

βk kicker beta function
Q betatron tune
φpk phase advance between pickup to kicker

ωr revolution frequency in radian/sec
c velocity of light
fclock frequency of digitizer clock in Hz
f3dB 3 dB cutoff frequency of amplifier

γ ratio of particle mass to rest mass
β ratio of particle velocity to the velocity of light
Gpa maximum gain of the power amplifier chain
Vbit resolution of the digitizer
<Ppunoise> Equivalent noise power of the damper front end referenced to the

output of the pickup hybrid
Zk impedance of the kicker
gm Conversion gain of pulse shaping mixer
VA/Dmax Maximum voltage before the A/D is destroyed

VAD834max Maximum output voltage of the closed orbit suppression multiplier

SAD834 Noise power spectral density of the closed orbit suppression multiplier


